
Bachelor Project

Czech
Technical
University
in Prague

Faculty of Electrical Engineering, Department of Telecommunications

Identifying suspicious behavior of network
devices using machine learning methods

Katsiaryna Zubaryk

Supervisor: Ing. Pavel Bezpalec, Ph.D.
May 2023

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491881 Personal ID number: Zubaryk Katsiaryna Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Electronics and Communications Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Identifying Suspicious Behavior of Network Devices Using Machine Learning Methods

Bachelor’s thesis title in Czech:

Identifikace podezřelého chování síťového zařízení pomocí metod strojového učení

Guidelines:

Analyse security incident detection and prevention systems. Design the coding of analysed incidents into an appropriate
data space.
Perform a search for data clustering methods suitable for the proposed space. Assess their suitability for anomaly detection
and apply one method in combination with the proposed metrics on the specified data. Find suitable visualization techniques
to project the data into a lower dimension and use them to display the detected anomalies against the remaining data.

Bibliography / sources:

[1] AGGARWAL, CHARU C. a CHANDAN K. REDDY, ed. Data clustering: algorithms and applications. Boca Raton, Fla.:
CRC Press, c2014, xxvi, 622 s. Chapman & Hall/CRC data mining and knowledge discovery series. ISBN
978-1-4665-5821-2.
[2] AXELSSON, Stefan. (2000). Intrusion Detection Systems: A Survey and Taxonomy.
[3] KOHOUT, J., ŠKARDA, Č., SHCHERBIN, K., KOPP, M., & BRABEC, J. (2021). A framework for comprehensible
multi-modal detection of cyber threats.

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel Bezpalec, Ph.D. Department of Telecommunications Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022 Date of bachelor’s thesis assignment: 01.03.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Pavel Bezpalec, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iii

Abstract
The purpose of this thesis is to investi-
gate the application of machine learning
techniques to detect suspicious behavior
of network devices. With the increasing
complexity of cyber threats, it has become
imperative to develop effective methods to
detect abnormal activities that could po-
tentially indicate security or malicious net-
work activities. This research focuses on
the study of machine learning algorithms
and approaches to detect and classify sus-
picious behavior of network devices.

Keywords: Clustering, Unsupervised,
feature selection. . .

Keywords:

Supervisor: Ing. Pavel Bezpalec, Ph.D.
Technická 2, Praha

Abstrakt
Cílem této práce je prozkoumat použití
technik strojového učení k detekci pode-
zřelého chování síťových zařízení. S ros-
toucí složitostí kybernetických hrozeb se
stalo nezbytným vyvinout účinné metody
pro detekci abnormálních aktivit, které by
mohly potenciálně indikovat bezpečnostní
nebo škodlivé aktivity v síti. Tento vý-
zkum se zaměřuje na studium algoritmů
a přístupů strojového učení k detekci a
klasifikaci podezřelého chování síťových
zařízení.

Klíčová slova: Clusterind, učení bez
dohledu, výběr prvků. . .

Klíčová slova:

Překlad názvu: Identifikace
podezřelého chování sítového zařízení
pomocí metod strojového učení

iv

Contents
Acknowledgements 1
I 1
Declaration 3
I 3
1 Introduction 5
1.1 Unsupervised identification 5
1.2 Supervised identification 6
1.3 Selected identification for thesis . 7
2 Introduction to data analysis for
unsupervised identification 9
2.1 Programming language 9
2.2 Description of the dataset 9
2.3 Data analysis 10
2.4 Visualisation technique 12
3 Feature selection 19
3.1 Correlation matrix 21
4 Clustering 25
4.1 Distances . 26
4.2 K-means clustering 27

4.2.1 Factors affecting K-means . . . 29
4.2.2 Anomaly detection in K-means 30
4.2.3 Outlier detection 32

4.3 Hierarchical Agglomerative
clustering . 33
4.3.1 Anomaly detection in

Agglomerative clustering 33
4.4 Visualisation technique 33
5 Conclusion 45
Bibliography 47
A Appendix 51
A.1 Time table 51
A.2 Correlation 51
A.3 Plotly graphs 51
A.4 Outliers . 51

v

Figures
2.1 Python libraries 10
2.2 Loading the dataset 11
2.3 Python code for unique data . . . 11
2.4 Events with lots of eventIds 12
2.5 Histogram for code 2.6 14
2.6 How many eventTitles have the

given number of eventIds. 15
2.7 Events that have more than the

average occurrence value 15
2.8 Python code for considering the

timing of eventTitles 16
2.9 Histogram code for longer-lasting

events . 17
2.10 Events from sources that last

longer than 0 ms. 17
2.11 Python code for longer-lasting

events . 17
2.12 Code to find assetId which have

more then average eventTitle 18
2.13 Python code to find unique

values . 18
2.14 Python code for grouped data . 18
2.15 Python code for a practical

dataset . 18
2.16 Python code for one-hot-encoded

vector . 18

3.1 Plot (a) shows the dimensionality
growth trend in UCI Machine
Learning Repository from mid ’80s to
2012 while (b) shows the growth in
the sample size for the same period
[11] . 19

3.2 Code for correlation matrix 22
3.3 Values with a strong correlation

coeficient . 23
3.4 Updated dataset 23

4.1 An illustration of 4 iterations of
K-means over the Fisher Iris
dataset[11]. 29

4.2 Code for Calinski-Harbasz score 30
4.3 Calinski-Harbasz score 31
4.4 Categories oe eventTitles 31
4.5 A comparison between the 1 and

the 2 clusters 34

4.6 Polar Plot between the 1 and the 2
clusters . 35

4.7 Function that calculates distance
measures . 36

4.8 Code for 1 cluster 36
4.9 Histogram of Euclidean distance

for the 1 cluster. 36
4.10 Code for 1 cluster 37
4.11 Histogram of Manhatten distance

for the 1 cluster. 37
4.12 AssetIds that farther from the

center than 2.3 37
4.13 AssetIds that farther from the

center than 7.0 37
4.14 Dataframe with Euclidean

distance for the 1 cluster. 37
4.15 Dataframe with Manhattan

distance for the 1 cluster. 38
4.16 Asset compared to the center of

the cluster . 39
4.17 Asset compared to the center of

the cluster . 40
4.18 The use of Euclidean metric in

Hierarchical Clustering 41
4.19 The use of Jaccard metric in

Hierarchical Clustering 42
4.20 Agglomerative clustering with

Euclidean distance 43
4.21 Agglomerative clustering with

Jaccard distance 43

A.1 Events that last longer than 0 ms 52
A.2 Correlation matrix 53
A.3 Polar Plot between the 1 and the

3 clusters . 54
A.4 Polar Plot between the 2 and the

3 clusters . 55
A.5 Polar Plot 55
A.6 Polar Plot 56
A.7 Polar Plot 56
A.8 Polar Plot 57
A.9 Dataframe with Euclidean

distance > 2.2 for the 2 cluster. . . . 57
A.10 Dataframe with Manhattan

distance > 10.0 for the 2 cluster. . . 57
A.11 Dataframe with Euclidean

distance >3.0 for the 3 cluster. . . . 57

vi

A.12 Dataframe with Manhattan
distance > 13.0 for the 3 cluster. . . 58

Tables
2.1 Description of the dataset 10
2.2 Amount of data 12
2.3 Events with lots of eventIds 13
2.4 Events that have more than the

average occurrence value 16

4.1 K-means algorithm 28

vii

Acknowledgements

would like to thank my supervisor Ing. Pavel Bezpalec, Ph.D. and to Lukáš
Bátrla from CISCO Systems for there professional guidance and valuable
advice.

1

2

Declaration

declare that I have prepared the submitted work independently and that I
have listed all the information sources used in accordance with in accordance
with the Methodological Guideline on the Observance of Ethical Principles
in the Preparation of a University Thesis.

3

4

Chapter 1
Introduction

Identification of suspicious device action is a vital aspect of modern-day
security systems. With the increasing use of Internet of Things (IoT) devices
in our daily lives, it has become necessary to take reliable security measures to
protect our privacy and security. Unsupervised and supervised identification
of suspicious device activity are measures that can help us detect any abnormal
behavior of IoT devices and prevent any security breaches.

1.1 Unsupervised identification

Unsupervised identification is a machine learning technique that finds and
identifies patterns or anomalies in data without the need for labeled training
examples. It is the opposite of supervised learning, where a model is trained
on data with explicit labels showing the correct answers[1].

The use of unsupervised identification methods is becoming popular in
data analysis, especially for detecting patterns and relationships that may
previously have been undetected. According to Ella Rabinovich and Shuly
Wintner from Department of Computer Science at the University of Haifa,
"We then show that unsupervised classification is highly accurate on this
task"[2] which emphasizes the effectiveness of these methods in detecting
hidden ideas in datasets. Methods of unsupervised identification are [3]:..1. Dimensionality reduction. This is a technique that is used when the

number of features, or dimensions, in a given dataset is too large. It
reduces the number of inputs to an acceptable size while maintaining the
integrity of the dataset as much as possible[5]. It is usually used in the
preprocessing phase of the data, and there are several different methods
of dimensionality reduction, such as:..a. Principal component analysis (PCA)[3]..b. PCA Kernel[3]..2. Clustering. This is a data mining technique which groups unlabeled
data based on their similarities or differences. Clustering algorithms are
used to process raw, unclassified data objects into groups represented by

5

1. Introduction
structures or patterns in the information[5]. Clustering algorithms can
be categorized as:..a. K-means[3]..b. Hierarchical cluster analysis (HCA)[3]

With the exponential growth of data in recent years, it has become increas-
ingly difficult for humans to manually identify patterns and extract insights
from them. This is where unsupervised identification methods can play a
crucial role. These methods allow computers to automatically detect patterns
in large datasets that may not be obvious to humans, saving valuable time
and resources.

Unsupervised identification is widely used in a wide variety of work areas,
including:..1. Cybersecurity: In this field, detection of anomalous or malicious be-

haviour in computer networks, security systems is required. Unsuper-
vised learning models can detect unusual network packets, burst traffic
or unexpected access to systems and prevent cyberattacks[3]...2. Financial services sector: The financial industry also needs to detect
fraudulent transactions, anomalies in transactions or changes in patterns
of behavior in markets. Unsupervised learning models can help identify
unusual financial transactions and take timely action[4]...3. Medicine and healthcare: In the medical field, unsupervised identification
can be applied to detect outliers in medical data, identify rare or new
diseases, and analyse images. Unsupervised learning models can help
doctors and researchers detect pathologies or anomalies that may go
unnoticed[5]...4. Marketing and data analysis: In marketing and data analysis can be used
to segment customers, identify behavioral patterns, predict consumer
preferences or personalise recommendations. Unsupervised learning
models can help identify groups of similar customers and determine their
characteristics for a more effective marketing strategy[5].

In conclusion, unsupervised identification techniques offer a promising solution
for organizations that want to extract valuable insights from large and complex
datasets. Using machine learning algorithms, such as clustering and anomaly
detection, may help reduce human error and ultimately save valuable time and
resources. These methods are especially useful when working with unlabeled
data or when the goal is to identify previously unknown patterns in the data.

1.2 Supervised identification

Supervised identification is the process of identifying patterns, or anomalies
in the data using labeled examples or a previously defined target variable.

6

............................ 1.3. Selected identification for thesis

In supervised learning, a model is trained on a dataset where each data
instance is associated with a known label or target value. The model learns
the relationship between the input features and the corresponding labels,
which allows it to make predictions or classifications on new, unseen data[1].

Various algorithms and techniques are used in supervised machine learning
processes:..1. Linear regression. It is used to identify the relationship between a

dependent variable and one or more independent variables and is typically
leveraged to make predictions about future outcomes[6]...2. Logistic regression. While linear regression is leveraged when dependent
variables are continuous, logistic regression is selected when the dependent
variable is categorical, meaning they have binary outputs[6]...3. K-nearest neighbor. Also known as the KNN algorithm, is a non-
parametric algorithm that classifies data points based on their proximity
and association to other available data. This algorithm assumes that
similar data points can be found near each other. As a result, it seeks to
calculate the distance between data points[6].

Those techniques have proven useful in various fields such as:..1. Image- and object-recognition[5]. It can be used to identify objects in
pictures or videos. For example, this method is used in machines with an
automatic control system. Or it can be used in medicine where existing
medical images of patients will be used as labels...2. Customer sentiment analysis[5]. It is possible to predict the sentiment or
opinion expressed by customers about a product, service or brand based
on their reviews or feedback...3. Spam detection[5]. Classifying emails or messages based on their content.

In conclusion, supervised identification is an essential process in machine
learning that allows for the accurate classification of information. The use
of human guidance in the training phase ensures that machines can identify
patterns and make predictions with high accuracy, making it a valuable tool
in fields such as automation, healthcare, and marketing.

1.3 Selected identification for thesis

In this thesis I will use unsupervised identification. Because the provided
data does not contain the specified labels, and the task of research is to find
anomalies among the various devices. I will use the clustering method. This
is one of the unsupervised learning methods that I wrote about in chapter
1.1. A separate paragraph about clustering is described in chapter 4.

7

8

Chapter 2
Introduction to data analysis for
unsupervised identification

Data analysis is an important part of unsupervised identification. It helps to
detect hidden patterns, structures and anomalies in the data without the use
of explicit labels or classification. In this chapter I will look at data analysis
in the context of unsupervised identification, focusing on a specific dataset.

2.1 Programming language

I have used Python programming language, Jupyter notebook platform and
relevant libraries for data analysis, machine learning and visualisation. The
specified libraries are in figure 2.1. The history of programming languages
used for machine learning tasks goes back more than 60 years. From the time
the first machine learning algorithms were created. During the development
of this industry, libraries and programming languages began to be created
to simplify the work of creating machine learning algorithms, and later the
creation of artificial intelligence and neural networks. As a result of this
evolution, the most successful language became Python, which is still one of
the most widely used for development in the industry. Python is voted by
data scientists as the "language most desirable to learn" in 2018 StackOverflow
survey [7].

Programming expertise in the organisation, interoperability with existing
code/data frameworks might be reasons to stick to traditional languages
such as C++ or Java. But the advantages that new-age languages such as
Python and R bring to Machine Learning are plenty. Ease of coding, strong
supporting developer community, and excellent data manipulation features
are key reasons for Python’s suitability for Machine Learning [8].

2.2 Description of the dataset

The dataset contains information about various events. Each record represents
an individual event and contains the following attributes (see table 2.1):

9

2. Introduction to data analysis for unsupervised identification.................
1 import pandas as pd
2 import numpy as np
3 from collections import Counter
4 import matplotlib . pyplot as plt
5 from collections import defaultdict
6 from scipy. spatial import distance
7 import openpyxl
8 import itertools
9 import seaborn as sns

10 from sklearn . cluster import KMeans
11 from sklearn . metrics import calinski_harabasz_score
12 import plotly . graph_objects as go
13 import plotly . offline as pyo
14 import scipy. cluster . hierarchy as shc
15 from scipy. spatial . distance import pdist
16 from scipy. cluster . hierarchy import linkage ,

dendrogram , fcluster

Figure 2.1: Python libraries

Attributes Description
eventId the unique identifier of the event
eventTitle the name of the event
assetId the identifier of the device, associated with the event
sourceId the source identifier of the event
startDay the date of the observation event on the device
from start time of the event
to time the event ended

Table 2.1: Description of the dataset

2.3 Data analysis

I started by loading the dataset into an appropriate software environment
and did the necessary preprocessing of the data, such as removing null values
(see figure 2.2).

In the next step, I analysed the main characteristics of the data. Such
as how much data we have. How many unique values are in the columns
carrying information about the name of the observed event and on which
devices they appeared (see figure 2.3). The result is given in the table 2.2.

I was looking if one eventTitle had more than one eventId (figure 2.4). I
had assumed that if more than one eventId per eventTitle, it could be seen
as some kind of suspicious activity. The output is in the table 2.3. Based
on the result, we can see that the most frequent events are: Anomalous
destination, Non-user activity, Unexpected application atd others. Which
makes my hypothesis correct.

10

.................................... 2.3. Data analysis

1 df=pd. read_csv (r’D:\ A_CVUT_FEL \ Bakalarska_prace \
2 security_event_data .csv ’)
3 df = df. dropna ()

Figure 2.2: Loading the dataset

1 print(’all the data we have :’,len(df[’eventTitle ’])
)

2 print(len(df[’eventId ’]. unique ()))
3 print(len(df[’eventTitle ’]. unique ()))
4 print(len(df[’assetId ’]. unique ()))

Figure 2.3: Python code for unique data

The histogram was created (see code 2.5) to give a more accurate view of
the unique eventTitles to which several eventIds belong (figure 2.6). The
histogram shows the distribution of eventTitles and how many eventIds relate
to them. Columns with lower heights have two or more different eventIds.
Which can be seen as suspicious events. Because each unique eventTitle
should also have a unique eventId.

Further analysis was done on the eventTitles (look at 2.7. I found the
events that appear most frequently in the dataset. Later, during a search
for a outliers, it will be possible to see whether the suspicious assetId has
these events. Because they appear in the dataset more often than others.
The result is given in the table 2.4.

Next, I decided to see how long each event lasts (code 2.8). The result is in
the table appendixA.1. From the table A.1 we can see that 54 events out of
180, which is 30% last more than 0 ms. Since most of the events lasted 0 ms,
the events from the table can be considered suspicious. All events that lasted
longer than 0 milliseconds were extracted (see code 2.9) from the 2.10.

To begin with, calculations were made on how many unique assetIds we
have in our data. And how many different eventTitles belong to them (see
the figure 2.11).

Next, find the average number of titles per asset. And find the asset
that has more eventTitles than the average (see code 2.12). The result of
running the code is: The assetId which have more then average eventTitle
is: b8368210-4879-3d5b-8247-2746b956109e 28. Perhaps this particular asset
will turn out to be the abnormal one.

After analysing the data, a dataset must be compiled to search for anomalies
among the devices or assets. For this, I took the unique assetIds and unique
eventTitles (see figure 2.13). Then they were grouped together in such a way
that each assetId had several events associated with it (see figure 2.14). This
was created to further dataset (see figure 2.15) where if an event is present in
a given assetId it is set to one, otherwise it is set to zero.

Prepare a dataset in the form of a one-hot-encoded vector for each asset (see
figure 2.16). After analysing the data and compiling the dataset, we can now

11

2. Introduction to data analysis for unsupervised identification.................
Count

all the data we have 886186
Unique eventId 180
Unique eventTitle 131
Unique assetId 4923

Table 2.2: Amount of data

1 idForTitle = df. drop_duplicates (). set_index (’eventId
’)[’eventTitle ’]. to_dict ()

2 values = idForTitle . values ()
3 countIdforTitle =dict(Counter (values))
4 sameName ={}
5 for i in countIdforTitle :
6 if countIdforTitle [i]>1:
7 print(i, countIdforTitle [i])
8 sameName [i]= countIdforTitle [i]

Figure 2.4: Events with lots of eventIds

proceed to the main topic of this thesis. And that is to find anomalies among
all devices or among assetIds. But In real-life data science problems, it is
almost rare that all the variables in the dataset are useful for building a model.
Adding redundant variables reduces the model’s generalization capability and
may also reduce the overall accuracy of a classifier. Furthermore, adding
more variables to a model increases the overall complexity of the model. In
order to reduce the dimensionality of a dataset, a feature selection is used.
The next chapter of the thesis is written about this.

2.4 Visualisation technique

To visualise the data in this section, I have used histograms with the help of
the library matplotlib.pyplot. A histogram is a way of presenting statistical
data graphically - in the form of a bar chart. It is sometimes called the
frequency distribution, as the histogram shows the frequency of occurrence
of the measured values of an object. Histograms in Python present several
advantages that help visualise and analyse data:..1. Ease of use: Python has many libraries, such as Matplotlib and Plotly,

which provide a simple and intuitive interface for creating histograms...2. Big data visualisation: Histograms can visualise large amounts of data.
This helps trends in the data that might be missed by simply looking at
numerical values...3. Interactivity: Some libraries in Python, such as Plotly, allow you to
create interactive histograms that can be zoomed in, selected specific

12

................................ 2.4. Visualisation technique

Event Count
Unusual file extension 2
Known malicious hostnames 3
Commands that run scripts 2
Usage of wmic 2
Unusual execution directory 2
Non-user activity 9
Anomalous destination 18
Repetitive requests or burst 3
TLS inconsistency 4
Unexpected application 5
HTTP to IP address 2
Unexpected user destination 4
Inconsistent user time activity 5
Anomalous HTTP 2

Table 2.3: Events with lots of eventIds

intervals or categories for more detailed analysis. These histograms will
be used in the chapter about clustering.

Histograms are powerful data visualisation tools that help to explore, analyse
and understand data. They are widely used in a variety of fields including
statistics, finance, marketing and more.

13

2. Introduction to data analysis for unsupervised identification.................

1 dict_countIdforTitle = {}
2 for i in countIdforTitle . values ():
3 dict_countIdforTitle [i] = dict_countIdforTitle .

get(i, 0) + 1
4

5 counts = list(dict_countIdforTitle . values ())
6 titles = list(dict_countIdforTitle .keys ())
7

8 # Sort the titles and counts based on the counts in
descending order

9 sorted_indices = sorted (range(len(counts)), key=
lambda k: counts [k], reverse =True)

10 titles = [titles [i] for i in sorted_indices]
11 counts = [counts [i] for i in sorted_indices]
12

13 plt.bar(range(len(titles)), counts)
14

15 plt. xlabel (’Number of eventIds ’)
16 plt. ylabel (’Counts ’)
17 plt.title(’Histogram ’)
18

19 plt. xticks (range(len(titles)), titles)
20

21 for i, count in enumerate (counts):
22 plt.text(i, count + 1, str(count), ha=’center ’)
23

24 plt. tight_layout ()
25 plt.show ()

Figure 2.5: Histogram for code 2.6

14

................................ 2.4. Visualisation technique

Figure 2.6: How many eventTitles have the given number of eventIds.

1 mainEventTitle = dict(Counter (df[’eventTitle ’]))
2 average =0
3 for i in mainEventTitle :
4 average += mainEventTitle [i]
5 average = average /len(mainEventTitle)
6 print(average)
7 maxx =0
8 for i in mainEventTitle :
9 if mainEventTitle [i]> average :

10 print(i, mainEventTitle [i])
11 if maxx < mainEventTitle [i]:
12 maxx = mainEventTitle [i]
13 r=i
14 print(’The main eventTitle is:’, r, maxx)

Figure 2.7: Events that have more than the average occurrence value

15

2. Introduction to data analysis for unsupervised identification.................
Event Occurrence value
Product Update Started 7151
ClamAV exceeded max file scan time 10770
Product Update Failed 7078
Quarantine Delete Started 16898
Quarantine Delete Success 13649
HTTPS communication 177248
Known site 208838
No Server Traffic 10513
Non-user activity 54927
Domain letter to non-letter ratio 69767
Data upload 6820
Anomalous destination 132513
TLS inconsistency 13733
Unexpected application 61637
Multimedia streaming 11998
Communication blocked by proxy 17323
Inconsistent user time activity 11221
The main eventTitle is: Known site 208838

Table 2.4: Events that have more than the average occurrence value

1 dict_from = df. groupby (’eventTitle ’)[’from ’]. unique
(). to_dict ()

2 dict_to = df. groupby (’eventTitle ’).to. unique ().
to_dict ()

3 minus =0
4 dict_lasts = defaultdict (list)
5 for i in dict_to :
6 for j, jj in enumerate (dict_to [i]):
7 minus= dict_to [i][j]- dict_from [i][j]
8 dict_lasts [i]. append (minus)
9 notNullTime = defaultdict (list)

10 for i in dict_lasts :
11 if len(dict_lasts [i]) !=1:
12 if(all(x== dict_lasts [i][0] for x in

dict_lasts [i]))== False :
13 notNullTime [i]. append (dict_lasts

[i])
14 else:
15 if 0 not in dict_lasts [i]:
16 notNullTime [i]. append (dict_lasts [i])
17 else:
18 if dict_lasts [i]!=[0]:
19 notNullTime [i]. append (dict_lasts [i])

Figure 2.8: Python code for considering the timing of eventTitles

16

................................ 2.4. Visualisation technique

1 dict_source = df. groupby (’eventTitle ’). sourceId .
unique (). to_dict ()

2 source ={}
3 for i in notNullTime :
4 if list(dict_source [i]) [0] not in source : source

[list(dict_source [i]) [0]]=1
5 else: source [list(dict_source [i]) [0]]+=1
6 counts = list(source . values ())
7 titles = list(source .keys ())
8

9 plt.bar(titles , counts)
10 plt. xlabel (’Source ’)
11 plt. ylabel (’Event counts ’)
12 plt.title(’Sources that last longer than 0 ms’)
13 plt.show ()

Figure 2.9: Histogram code for longer-lasting events

Figure 2.10: Events from sources that last longer than 0 ms

1 countSourceId =df. groupby (’assetId ’). eventTitle .
nunique ()

2 countSourceId = countSourceId . to_dict ()

Figure 2.11: Python code for longer-lasting events

17

2. Introduction to data analysis for unsupervised identification.................
1 countSourceId = df. groupby (’assetId ’). eventTitle .

nunique (). to_dict ()
2 average =0
3 for i in countSourceId :
4 average += countSourceId [i]
5 average = average /len(countSourceId)
6 maxx =0
7 for i in countSourceId :
8 if countSourceId [i]> average :
9 if maxx < countSourceId [i]:

10 maxx = countSourceId [i]
11 r=i
12 print(’The assetId which have more then average

eventTitle is:’, r, maxx)

Figure 2.12: Code to find assetId which have more then average eventTitle

1 uniqueAssets = df[’assetId ’]. unique ()
2 uniqueEventTitle = df[’eventTitle ’]. unique ()

Figure 2.13: Python code to find unique values

1 groupedData = df. groupby (’assetId ’). eventTitle .
unique ()

2 groupedData = groupedData . to_dict ()

Figure 2.14: Python code for grouped data

1 dataset = defaultdict (list)
2 for i in uniqueAssets :
3 for j in uniqueEventTitle :
4 if j in groupedData [i]: dataset [i]. append (1)
5 else: dataset [i]. append (0)

Figure 2.15: Python code for a practical dataset

1 oneEncodedVector = pd. DataFrame (dataset).T

Figure 2.16: Python code for one-hot-encoded vector

18

Chapter 3
Feature selection

The growth of high-throughput technologies nowadays has led to exponential
growth in the harvested data with respect to dimensionality and sample
size. As a consequence, storing and processing these data becomes more
challenging [11]. Figure 3.1 shows the trend of this growth for UCI Machine
Learning Repository.

.
Figure 3.1: Plot (a) shows the dimensionality growth trend in UCI Machine
Learning Repository from mid ’80s to 2012 while (b) shows the growth in the
sample size for the same period [11]

19

3. Feature selection
The production of an ever-expanding amount of data on a daily basis

has made feature selection a fundamental aspect of both data analysis and
machine learning. Machine learning relies on feature selection to identify
the most significant and informative attributes from large-scale datasets.
As highlighted by Younes Bouchlaghem, Yassine Akhiat and Souad Amjad
(2022) [10] from Department of Informatics in Morocco, feature selection is a
crucial area of study in data mining and machine learning that helps reduce
complexity, increase interpretability, and improve model performance[10].

There numerous feature selection methods that have been categorized into
three groups: filters, wrappers and embedded [10]...1. Filter model When it comes to selecting the most relevant features

for machine learning models, filter methods are often favored due to
their simplicity and efficiency. To cause the classification model, it first
ranks features individually based on a particular criterion measure such
as distance, Pearson correlation, and entropy. Second, it selects the
best-ranked features using a threshold value. The remaining features
are deemed to be unnecessary and uninformative [10]. However, some
researchers argue that filter methods may not always be the best approach
since they do not take into account the interactions between different
variables. In these cases, wrapper or embedded methods may provide
better results by evaluating subsets of features together rather than
individually [11].
Let’s, discuss some techniques from the filter model...a. Information gain.

Information gain is a measure used in the selection of features for
categorical variables. It determines the reduction of entropy or
uncertainty about the target variable when a particular attribute is
known [13]...b. Chi-square test.
The chi-square test is used to evaluate the independence between
two categorical variables. In feature selection, it measures the
relationship between each feature and the target variable. The
chi-square test calculates a test statistic that compares the observed
frequencies of the categories of each feature to the expected fre-
quencies under the assumption of independence. Features with a
higher chi-square test statistic or a lower p-value indicate a stronger
association with the target variable [13]...c. Correlation matrix.
Correlation is a measure of the linear relationship between 2 or more
variables. Through correlation, we can predict one variable from
the other. The logic behind using correlation for feature selection is
that good variables correlate highly with the target. Furthermore,
variables should be correlated with the target but uncorrelated
among themselves [13].

20

.................................. 3.1. Correlation matrix

If two variables show a correlation, we can make predictions about
one variable based on the other. Consequently, if two variables are
correlated, only one of them is needed for the model, as the second
variable provides no additional information...2. Wrapper feature selection model.

Wrapper feature selection methods involve evaluating subset of features
using a particular machine learning algorithm. Instead of relying on
statistical measures like correlation or information gain, the wrapper
method estimate subsets of features through the formation and evaluation
of a machine learning model. The selection process involves iterating
over various combinations of features and evaluating their performance
based on a chosen evaluation metric, such as accuracy or error rate. This
method may be computationally intensive but produces more accurate
results because it takes into account the interaction between the features
in the context of the chosen algorithm [10] and [13]...3. Embedded model.

Embedded methods combines the advantageous aspects of both Filter
and Wrapper methods. Embedded methods are selecting features based
on the learning procedure of the machine learning model. However,
Wrapper methods consider unimportant features iteratively based on the
evaluation metric, while embedded methods perform feature selection
and training of the algorithm in parallel[13] and [14].

In the realm of machine learning, feature selection is a critical process that
aids in pinpointing the most vital characteristics for predictive models. By
selecting meaningful features, it can reduce computational expenses while
simultaneously enhancing model accuracy and generalization performance.
The approach involves numerous techniques which are utilized based on how
intricate the dataset is; these include filter methods, wrapper methods and
embedded methods. In my research I used a filter model, and in particular, I
used a correlation matrix.

3.1 Correlation matrix

Correlation matrix feature selection has become an essential tool in the data
analysis toolbox. This technique allows for identifying and selecting the most
relevant features from a large dataset while considering their interdependencies.
It is particularly useful when dealing with high-dimensional datasets, where
the number of variables is often much larger than the number of observations.
The idea behind this method is to measure the correlation between each
pair of features and exclude those that are highly correlated or redundant.
Correlation values range from -1 to 1, where -1 indicates a perfect negative
correlation, 1 indicates a perfect positive correlation and 0 indicates no

21

3. Feature selection
1 strong_corr = oneEncodedVector .corr ().abs () > 0.8
2 strong_corr_vars = strong_corr .sum ()[strong_corr .sum

() > 1]. index
3 strong_corr_matrix = oneEncodedVector [

strong_corr_vars]
4 plot_corr = strong_corr_matrix .corr ()
5 plt. figure (figsize =(100 ,35))
6 sns. heatmap (plot_corr , annot =True)

Figure 3.2: Code for correlation matrix

correlation [16]. The correlation coefficient p(x, y) between two random
vectors x and y is defined as (Equation (3.1):[15]:

p(x, y) =
∑n

i=1((xi − mean(x)) · (yi − mean(y)))
(n − 1) · var(x) · var(y) (3.1)

Where var(x), var(y) denotes the variance of the random vector x or y. And
mean(x), mean(y) represent the mean values of variables x and y, respectively.

Then remove redundant variables that are highly correlated with other
variables. If two variables have a very high correlation coefficient, this may
indicate that they contain similar information and only one of them should be
left. In this way, we can keep variables that carry information while reducing
the dimensionality of the data without significant loss of information. A strong
correlation is considered to be a value between 0.8 for positive correlation
and -0.8 for negative correlation. However, it should be remembered that
correlation coefficients measure only linear relationships between variables
and do not reflect possible non-linear relationships [16]. In my thesis, I applied
the correlation matrix to an existing dataset (see figure 3.2).

Correlation matrix result is available in appendix A.2. From here I find a
strong correlation in the matrix and select only one value to remove from the
dataset (figure 3.3). Remove unnecessary columns from the dataset (figure
3.4).

After all the manipulation, I have a dataset for clustering.

22

.................................. 3.1. Correlation matrix

1 eventTitle_pairs = defaultdict ()
2 eventTitle_numb =[]
3 for i in plot_corr . columns :
4 for j in strong_corr .index:
5 if i!=j:
6 if (strong_corr [i][j] >=0.8) | (

strong_corr [i][j] <= -0.8):
7 if (uniqueEventTitle [j],

uniqueEventTitle [i]) not in
eventTitle_pairs :

8 eventTitle_pairs [(
uniqueEventTitle [i],
uniqueEventTitle [j])]=
strong_cor [i][j]

9 eventTitle_numb . append (j)

Figure 3.3: Values with a strong correlation coeficient

1 updateDataSet = oneEncodedVector .drop(
eventTitle_numb , axis =1)

Figure 3.4: Updated dataset

23

24

Chapter 4
Clustering

The machine learning technique known as clustering is a highly universal
method that groups data points based on their similarities or distance mea-
sures [11]. Clustering’s usefulness derives from its adaptability to various
fields such as computer science, data science, statistics, pattern recognition,
artificial intelligence, and machine learning [17]. Clustering provides a valu-
able tool for machine learning applications such as dynamic trend detection,
biological data analysis, and customer segmentation [11]. Despite its use-
fulness in various fields including healthcare and finance sectors, there are
still some challenges associated with clustering algorithms like determining
the optimal number of clusters needed when working with large datasets.
However, researchers continue to develop new methods to overcome these
limitations.

Over the past years, dozens of data clustering techniques have been proposed
and implemented to solve data clustering problems [17]. In general, clustering
analysis techniques can be divided into three main groups:..1. Distance-Based Algorithms These algorithms rely on the concept of

distance or similarity between data points to group similar instances
together. The distance measure plays a fundamental role in these al-
gorithms, as it determines the proximity or dissimilarity between data
points [11]. Distance-based methods are often desirable because of their
simplicity and ease of implementation in a wide variety of scenarios.
Distance-based algorithms can be generally divided into two types:..a. Flat: In this case, the data is divided into several clusters in one shot,

typically with the use of partitioning representatives. The choice
of the partitioning representative and distance function is crucial
and regulates the behavior of the underlying algorithm. In each
iteration, the data points are assigned to their closest partitioning
representatives, and then the representative is adjusted according to
the data points assigned to the cluster [11]. Some common methods
for creating the partitions are as follows:
(i) K-means. This is an iterative clustering algorithm that splits

the dataset into k clusters. The purpose of it is to minimise the
sum of the squares of the distances within a cluster. Euclidean

25

4. Clustering
distance is usually used as a distance metric to distribute data
points across clusters and update cluster centroids. The k
-Means method is considered one of the simplest and most
classical methods for data clustering and is also perhaps one of
the most widely used methods because of its simplicity [11].

(ii) K-medians. It is similar to the well-known K-means algorithm,
but uses a different measure of central tendency. K-medians
use the median to represent the center of each cluster. The
median is the average of a data point set, which makes it robust
to outliers and less sensitive to extremes [11]...b. Hierarchical: In these methods, the clusters are represented hierar-

chically through a dendogram , at varying levels of granularity
(i) Agglomerative: Involves creating a hierarchy of clusters by

iteratively merging smaller clusters into larger ones. This
technique requires the calculation of distances between pairs of
data points, which can be done using various distance metrics
[11] and [19].

(ii) Divisive: Opposite to agglomerative clustering. Starts by con-
sidering all the data points as a single cluster. And then splits
the cluster into smaller sub-clusters [11] and [19]...2. Density and Grid-Based Methods. Density-based methods are a popular

approach for clustering data points, which can be beneficial in several
applications. According to Brown’s (2020) research on density-based
methods [20], these techniques rely on the distribution of data points and
their proximity to identify clusters. A major advantage of these methods
is that since they explore the data space at a high level of granularity,
they can be used to reconstruct the entire shape of the data distribution
[11]...3. Leveraging Dimensionality Reduction Methods Dimensionality reduction
methods are closely related to both feature selection and clustering,
in that they attempt to use the closeness and correlations between
dimensions to reduce the dimensionality of representation. Thus, dimen-
sionality reduction methods can often be considered a vertical form of
clustering, in which columns of the data are clustered with the use of
either correlation or proximity analysis, as opposed to the rows [11].

The last two methods have the disadvantage that they are very complicated
to describe the algorithm. Therefore, I will explore well-known algorithms like
hierarchical clustering and K-means with the application of various distances.

4.1 Distances

Distance measures clustering, as a technique for grouping data points based
on their similarity or proximity, is an effective way to analyze and under-
stand large datasets. According to Sujan Dahal, there are several different

26

.................................. 4.2. K-means clustering

distance measures used in clustering, including Euclidean, Squared Euclidean,
Manhattan, Chebyshev and Mahalanobis distance (2015) [21]...1. Euclidean distance. The most common distance function. Represents

the geometric distance in multidimensional space [18]:

D(x1, x2) =

√√√√ n∑
i=1

(y1i − y2i)2 (4.1)

In this formula (4.1), y1i and y2i represent the i-th coordinate values of x1
and x2 respectively. The Euclidean distance is calculated by taking the
square root of the sum of the squared differences between corresponding
coordinates...2. City block distance (Manhattan distance). This distance is the average
of the coordinate differences. In most cases, this distance measure leads
to the same results as the regular Euclidean distance. However, for this
measure, the influence of individual large differences (outliers) is reduced
(since they are not squared). The formula (4.2) for calculating Manhattan
distance between two points x1 and x2 in an n-dimensional space is
calculated as the sum of the absolute differences between corresponding
coordinates [18]:

D(x1, x2) =
n∑

i=1
|y1i − y2i | (4.2)..3. Jaccard distance. The Jaccard distance is commonly used to measure the

dissimilarity or distance between two sets. It is particularly useful when
dealing with binary or categorical data, where the presence or absence
of elements in the sets is of interest. The Jaccard distance between two
sets A and B is calculated as the complement of the Jaccard similarity
coefficient [18]. It is defined as (4.3):

D(A, B) = 1 − |A ∩ B|
|A ∪ B|

(4.3)

In Sujan Dahal master’s thesis on this topic evaluates the impact of these
different measures on clustering output. By applying the K-medoid method
(K-medoids method is the modified form of the K-means method) with various
distance measures to a spatial dataset in his research area, Dahal found that
the result of clustering varies depending on which measure is used. This
suggests that it is crucial to choose the appropriate measure for each specific
task when using this technique [21].

4.2 K-means clustering

When data scientists want to cluster data points, they often refer to a popular
algorithm called K-means clustering. This powerful tool allows you to divide

27

4. Clustering
1) Clustering select K points as initial centroids.
2) repeat
3) Form K clusters by assigning each point to its closest centroid.
4) Recompute the centroid of each cluster.
5) until convergence criterion is met.

Table 4.1: K-means algorithm

n observations into k clusters based on similarity or distance metrics. But
where did this technique come from? K-means clustering was first proposed by
Stuart Lloyd in 1957 as a pulse-code modulation quantization (PCM) coding
technique [22]. In the years since its creation, it has become widespread in
various fields such as image processing, data mining and market segmentation.

But what makes K-means so effective? By iteratively assigning each
observation to the cluster whose mean is closest, it is able to minimize inter-
cluster variance and maximize inter-cluster partitioning [11]. Because of
its ability to efficiently handle large datasets in a variety of domains and
applications, K-means remains one of the most commonly used algorithms
today.

K-means clustering is a powerful unsupervised learning technique that
has been widely used in various fields, including education. In fact, a study
by Sari et al (2017) demonstrates the use of K-means algorithm to classify
students’ activities using e-learning platforms [23]. By grouping similar
activity patterns, this approach yielded clusters of students’ behavior and
allowed for an improvement in student’s ability. This application shows how
Kmeans can be instrumental in identifying relationships between data points
and providing insights into complex systems. The beauty of K-means lies in
its simplicity yet effectiveness. It works by iteratively assigning each data
point to the nearest centroid and updating their positions until convergence
[23].

Although it is not immune to limitations such as sensitivity to initial
conditions or outliers, K-means remains one of the most popular clustering
algorithms due to its flexibility and ease of use.

K-means clustering is a greedy algorithm that is guaranteed to converge to
a local minimum but the minimization of its score function is known to be
NP-Hard [11]. Typically, the convergence condition is relaxed and a weaker
condition may be used. In practice, it follows the rule that the iterative
procedure must be continued until 1% of the points change their cluster
memberships. Detailed proof of the mathematical convergence of K-means
can be found in [24].

The K-means algorithm [11]: 4.1.

The algorithm is simple enough, but there are factors that greatly affect
how it works and the final result.

28

.................................. 4.2. K-means clustering

Figure 4.1: An illustration of 4 iterations of K-means over the Fisher Iris
dataset[11].

4.2.1 Factors affecting K-means

The major factors that can impact the performance of the K -means algorithm
are the following:

Choosing the initial centroids

Choosing K initial centroids in K-means is a critical step in the clustering
process that can significantly impact the quality of results. There are several
initialization methods:..1. Hartigan and Wong. First one entire cluster is allocated. Then it splits

into two smaller clusters and will continue to split until it reaches a given
number of clusters. The division will be considered completed if it leads
to a deviation and variance reduction [11]...2. Bradley and Fayyad. This initialization works by selecting random
subsamples from the data. And to each subsample it applies k-means
clustering. The centroids obtained from these subsamples are then
clustered again using k-means. The set of centroids giving the minimum
sum of squares errors (SSE) is chosen as the initial set of seeds for
k-means clustering [11]...3. K-means ++. The algorithm begins by randomly selecting the first
centroid from the data points. Then, for each subsequent centroid, we
calculate the distance between each data point and the closest already
selected centroid. The probability of choosing a data point as the next
centroid is higher if it is far away from the existing centroids [11]

29

4. Clustering
1 ch_scores = []
2 k_range = range (2, 15)
3 for k in k_range :
4 kmeans_model = KMeans (n_clusters =k, n_init =’auto

’, random_state =1).fit(updateDataSet)
5 ch_score = calinski_harabasz_score (updateDataSet

, kmeans_model . labels_)
6

7 ch_scores . append (ch_score)
8

9 plt.plot(k_range , ch_scores)
10 plt. xlabel (’Number of clusters K’)
11 plt. ylabel (’Calinski - Harabasz Score ’)
12 plt.title(’Calinski - Harabasz Score ’)
13 plt.show ()
14 best_k = np. argmax (ch_scores) + 2 # Add 2 because

k_range starts from 2
15 print("Best value of K =", best_k)

Figure 4.2: Code for Calinski-Harbasz score

For my thesis, I used the initialization of K-means++ as it is built into the
library sklearn.cluster.kmeans_plusplus. Which I will use for clustering.

Calculation the number of clusters K

In my research, I used one method to find the best value. Namely:..1. Calinski-Harbasz score [26]. The index is defined by Equation (4.4):

CH(K) = B(K) · (K − 1)
W (K) · (N − K) (4.4)

To find the best value of K (figure 4.2) was written a code. As a result, you
can see a graph that represents the dependence of the Calinski-Harbasz score
on the number of clusters.

Where a higher value indicates better-defined and well-separated clusters.
From the graph 4.3, you can see that the best number of clusters is 3.

4.2.2 Anomaly detection in K-means

This is the topic that has sparked the curiosity of many researchers, data
scientists, and analysts. The potential to uncover hidden insights or identify
outlying behaviors within datasets has made this area of study critical for
various industries such as finance, healthcare, and cybersecurity [11] [17].

However, before delving into the intricacies of detecting anomalies with the
K-means clustering algorithm, let me first explain what an anomaly is.

30

.................................. 4.2. K-means clustering

Figure 4.3: Calinski-Harbasz score

1 d={}
2 j=0
3 for i in uniqueEventTitle :
4 if j not in eventTitle_numb :
5 if j!=40:
6 d[j]=i
7 j+=1
8 else: j+=1
9 else: j+=1

Figure 4.4: Categories oe eventTitles

In its simplest form, an anomaly can be defined as something that deviates
from what is standard or expected. In the world of data analysis though,
identifying these anomalies can prove to be challenging due to their sporadic
nature and often ambiguous definition. This is where K-means clustering
comes in by grouping similar observations together based on specific features
[27].

One challenge in anomaly detection with K-means is determining the
appropriate threshold for identifying outliers, as it may based on the specific
data being analyzed and the goals of the analysis.

Now I have everything for finding anomalies. Filtered dataset without
unnecessary data. A choice of initialized method and the required number of
clusters.

To begin with, I created a dictionary made up of categories or eventTitles
(code 4.4). Next, since we have three clusters. For our convenience, we will
compare first and second 4.5, first and third, and finally second and third

31

4. Clustering
clusters.

For the other clusters, we will use the same code (4.5), but we will change
the cluster_1 and cluster_2 variables respectively on cluster_1 and cluster_3
or cluster_2 and the last one cluster_3 :

As a result, we get three plotly graphs (see figure 4.6, appendix A.3 figure
A.3, A.4). These plots show in which eventTitles the clusters differ by more
than 20%.

And the last part is to find the distances from the center centroids to each
assetId or outliers.

4.2.3 Outlier detection

To do this, I created a function (figure 4.7) that calculates two metrics. The
Euclidean distance and the Manhattan distance. Let’s see and compare what
suspicious assetIds each metric find.

Consider the results of the Euclidean 4.8 distance and the Manhattan 4.10
distance about the first and second clusters.

The result is histograms (4.9 and 4.11) that represent how many outliers
are near or far from the cluster center. For example, in histogram 4.9, you
can see that the farthest outliers are more than at a distance of two point
three. And in histogram 4.11, outliers are at a distance of seven. To see those
assetIds, let’s run the code (figure 4.12 and 4.13).

We end up with two dataframes (4.14 and 4.15) with the same result. This
tells us that the metrics are quite similar to themselves. Let me remember
the formulas by which they are calculated (Chapter 5.1). The formulas are
very similar...1. Euclidean distance (equation 4.1): D(x1, x2) =

√∑n
i=1(y1i − y2i)2..2. City block (Manhattan) distance (equation 4.2): D(x1, x2) =

∑n
i=1 |y1i − y2i |

If we want to see how the outliers look compared to the cluster center, then
we have to run the following code (figure 4.16).

All you have to do is set the number of clusters (label), the threshold and
the categories. The code 4.17 searches for assetIds using the Euclidean metric.
For the Manhattan metric, the code will be identical, except for specifying
the metric and the other threshold.

And the result is shown in the figure (4.17). You can immediately see that
all of the asset values are much larger than the center of the cluster.

However, if we choose a different threshold, the result will change. As seen
in the diagram in the (appendix figures A.9, A.10, A.11, A.12). Assets are
almost identical in each cluster using Euclidean and Manhattan metrics. The
result depends only on the choice of threshold. As you can see from the
(figures A.9, A.10), our first asset is b8368210-4879-3d5b-8247-2746b956109e.
In the chapter on data analytics (3.3) I indicated that this asset has more
then average eventTitles. This shows that my suggestion was correct.

32

.......................... 4.3. Hierarchical Agglomerative clustering

4.3 Hierarchical Agglomerative clustering

In the past few years, Agglomerative clustering has gained widespread recog-
nition for its ability to manage data that is not linearly separable. This
common challenge can prove difficult for other clustering techniques. This
method proves especially useful when handling complex datasets with intri-
cate structures since traditional algorithms often fail in classifying them with
ease. Aljumily (2016) [28] highlights Agglomerative clustering’s functionality
by creating a vector-distance matrix and constructing a hierarchical tree.
The creation of this layout allows patterns and similarities in the data to be
identified regardless of their linearity or separation boundaries. Agglomerative
clustering works recursively by combining similar objects into clusters until
all elements belong to one large group or individual clusters without any
coherence between them (Aljumily, 2016) [28]. Therefore, this particular tech-
nique is efficient at grouping observations together based on shared attributes
without being constrained by separation limits.

4.3.1 Anomaly detection in Agglomerative clustering

This clustering method is considered fast and easy thanks to the Python
libraries. We calculate pairwise distances than set up a traverse and calculate
the coupling matrix.

This time I decided to change the metrics and use Euclidean distance
(figure 4.18) and Jaccard (figure 4.19) distance. The result of executing the
code (4.20 and 4.21) is the number of assets in each cluster. And if there is
one asset in the cluster, we can consider it as suspicious assetId. The result
is two figures (4.20 and 4.21).

Based on the result that clustering with the Euclidean (4.20) metric gave
us too many assetIds, this metric is not suitable here. Because we want to
get about 0.1% of the assestIds as anomalous. Because it would be easier for
the analyst to deal with a small amount of data in the future and not make a
mistake without spending a lot of time.

4.4 Visualisation technique

This time I used a tool like plotly. Plotly is a Python data visualization library
that provides many features and benefits that make it very user-friendly:..1. Interactivity: One of the main benefits of Plotly is the ability to create

interactive graphs. We can scale graphs to move, hover over data, and
more...2. Wide range of charts: Plotly supports a wide range of chart types,
including line, bar, pie, point, heat map, bar graphs. You can choose
from a variety of styles and options to customize the appearance of the
charts to your needs.

33

4. Clustering

1

2 categories = list(d. values ())
3 # Perform K-Means clustering with k=3
4 kmeans = KMeans (n_clusters =3, init=’k-means ++’,

n_init =’auto ’).fit(updateDataSet)
5 fig = go. Figure ()
6

7 # Add the data for each cluster
8 cluster_1 = updateDataSet [kmeans . labels_ == 0]. mean

()
9 cluster_2 = updateDataSet [kmeans . labels_ == 1]. mean

()
10

11 difference_index = abs(cluster_1 - cluster_2) >=0.2
12

13

14 categories = [d[i] for i in list(cluster_1 .index[
difference_index])]

15

16 cluster_1 = list(cluster_1 [difference_index])
17 cluster_2 = list(cluster_2 [difference_index])
18

19 fig. add_trace (go. Scatterpolar (r=cluster_1 , theta=
categories , fill=’toself ’, name=f’Cluster 1’))

20 fig. add_trace (go. Scatterpolar (r=cluster_2 , theta=
categories , fill=’toself ’, name=f’Cluster 2’))

21

22 fig. update_layout (title=go. layout .Title(text=’
Clusters ’),

23 polar ={’radialaxis ’: {’visible ’:
True }},

24 showlegend =True)
25

26 pyo.plot(fig)

Figure 4.5: A comparison between the 1 and the 2 clusters

34

................................ 4.4. Visualisation technique

Figure 4.6: Polar Plot between the 1 and the 2 clusters

35

4. Clustering
1 def distance_from_center (row):
2 label = row[’label ’]
3 center_cluster = kmeans . cluster_centers_ [label]
4 data_vector = row [: center_cluster .size]. to_numpy

()
5

6 distance_euclidean = distance . euclidean (
data_vector , center_cluster)

7 distance_cityblock = distance . cityblock (
data_vector , center_cluster)

8 return np.round(distance_euclidean , 2), np.round
(distance_cityblock , 2)

9

10 updateDataSet [’label ’] = kmeans . labels_
11 # updateDataSet [’ distance ’] = updateDataSet .apply(

distance_from_center , axis =1)
12 updateDataSet [’distance_euclidean ’], updateDataSet [’

distance_cityblock ’] = zip (* updateDataSet .apply(
distance_from_center , axis =1))

Figure 4.7: Function that calculates distance measures

1 updateDataSet [updateDataSet .label == 0].
distance_euclidean .plot(kind=’hist ’, bins =20, log
=False)

Figure 4.8: Code for 1 cluster

Figure 4.9: Histogram of Euclidean distance for the 1 cluster.

36

................................ 4.4. Visualisation technique

1 updateDataSet [updateDataSet .label == 0].
distance_cityblock .plot(kind=’hist ’, bins =20, log
=False)

Figure 4.10: Code for 1 cluster

Figure 4.11: Histogram of Manhatten distance for the 1 cluster.

1 threshold = 2.3
2 updateDataSet [updateDataSet .label == 0][

updateDataSet . distance_euclidean > threshold]

Figure 4.12: AssetIds that farther from the center than 2.3

1 threshold =7.0
2 updateDataSet [updateDataSet .label == 0][

updateDataSet . distance_cityblock > threshold]

Figure 4.13: AssetIds that farther from the center than 7.0

Figure 4.14: Dataframe with Euclidean distance for the 1 cluster.

37

4. Clustering

Figure 4.15: Dataframe with Manhattan distance for the 1 cluster.

38

................................ 4.4. Visualisation technique

1

2 def cluster_comparison (data , label ,
distance_threshold , d):

3 fig = go. Figure ()
4

5 # Add the data for each cluster
6 asset = data[data.label == label][data.

distance_euclidean > distance_threshold]. iloc
[0]

7 label = int(asset[’label ’])
8 vector_size = kmeans . cluster_centers_ [label].

size
9 cluster_center = data[kmeans . labels_ == label].

mean ()[: vector_size]
10 asset_vector = asset [: vector_size]
11

12 difference_index = abs(cluster_center -
asset_vector) >= 0.2 # calculates the
absolute difference between the corresponding

elements
13

14 categories = [d[i] for i in list(cluster_center .
index[difference_index])]

15

16 cluster_center = list(cluster_center [
difference_index])

17 asset_vector = list(asset_vector [
difference_index])

18

19 fig. add_trace (go. Scatterpolar (r= cluster_center ,
theta=categories , fill=’toself ’, name=f’
Cluster center ’))

20 fig. add_trace (go. Scatterpolar (r= asset_vector ,
theta=categories , fill=’toself ’, name=f’Asset
’))

21

22 fig. update_layout (title=go. layout .Title(text=’
Clusters ’),

23 polar ={ ’radialaxis ’: {’visible
’: True }},

24 showlegend =True)
25

26 pyo.plot(fig)
27 label = 0
28 threshold = 2.3
29 cluster_comparison (updateDataSet , label , threshold ,

d)

Figure 4.16: Asset compared to the center of the cluster39

4. Clustering

Figure 4.17: Asset compared to the center of the cluster

40

................................ 4.4. Visualisation technique

1 # Compute the pairwise distances between rows using
Euclidean distance

2 dists = pdist(updateDataSet , metric =’euclidean ’)
3

4 # Perform hierarchical clustering using single
linkage

5 linkage_matrix = linkage (dists , method =’single ’)
6

7 # Extract the cluster labels for a given distance
threshold

8 threshold = 0.6 # Adjust this value to obtain
different number of clusters

9 clusters = fcluster (linkage_matrix , threshold ,
criterion =’distance ’)

10

11 # Create a dictionary to store the cluster data
12 cluster_data = {}
13

14 # Compute the mean values for each cluster
15 for cluster_label in range (1, max(clusters) + 1):
16 cluster_data [cluster_label] = updateDataSet [

clusters == cluster_label]. mean ()
17 unique_values ,counts = np. unique (clusters ,

return_counts =True)
18 single_asset_clusters = []
19 for cluster_label , count in zip(unique_values ,

counts):
20 if count == 1:
21 cluster_rows = updateDataSet [clusters ==

cluster_label]
22 single_asset_clusters . append (cluster_rows)
23

24 df_single_asset_clusters = pd. concat (
single_asset_clusters)

25 df_single_asset_clusters

Figure 4.18: The use of Euclidean metric in Hierarchical Clustering

41

4. Clustering

1 # Compute the pairwise distances between rows using
Jaccard distance

2 dists = pdist(updateDataSet , metric =’jaccard ’)
3

4 # Perform hierarchical clustering using single
linkage

5 linkage_matrix = linkage (dists , method =’single ’)
6

7 # Extract the cluster labels for a given distance
threshold

8 threshold = 0.6 # Adjust this value to obtain
different number of clusters

9 clusters = fcluster (linkage_matrix , threshold ,
criterion =’distance ’)

10

11 # Create a dictionary to store the cluster data
12 cluster_data = {}
13

14 # Compute the mean values for each cluster
15 for cluster_label in range (1, max(clusters) + 1):
16 cluster_data [cluster_label] = updateDataSet [

clusters == cluster_label]. mean ()
17 unique_values ,counts = np. unique (clusters ,

return_counts =True)
18 single_asset_clusters = []
19 for cluster_label , count in zip(unique_values ,

counts):
20 if count == 1:
21 cluster_rows = updateDataSet [clusters ==

cluster_label]
22 single_asset_clusters . append (cluster_rows)
23

24 df_single_asset_clusters = pd. concat (
single_asset_clusters)

25 df_single_asset_clusters

Figure 4.19: The use of Jaccard metric in Hierarchical Clustering

42

................................ 4.4. Visualisation technique

Figure 4.20: Agglomerative clustering with Euclidean distance

Figure 4.21: Agglomerative clustering with Jaccard distance

43

44

Chapter 5
Conclusion

As a result, I would like to compare the results obtained with K-means and
Hierarchical clustering.

It is immediately obvious that the second method found the assets that
K-means did not find. Because from the (figure 4.21) these assets are located
close to the center of the cluster. This happened because of applying different
metrics, namely Euclidean and Manhattan metrics, which are similar to each
other, and Jaccard metric.

For the future it will be possible to see what assetsIds K-means method
will find using Jaccard distance. In the future development of this bachelor
thesis, it may be possible to write a neural network that will search for these
anomalies without human assistance. Because now a human sets the right
metric, cluster and threshold. At a later time, all this could be automated.

45

46

Bibliography

[1] Johnston, Benjamin, et al. Applied Unsupervised Learning with
Python : Discover Hidden Patterns and Relationships in Unstruc-
tured Data with Python, Packt Publishing, Limited, 2019. Pro-
Quest Ebook Central, https://ebookcentral.proquest.com/lib/techlib-
ebooks/detail.action?docID=5781350.

[2] Rabinovich, Ella and Wintner, Shuly, 2015, page 1, "Unsupervised Identi-
fication of Translationese". https://aclanthology.org/Q15-1030.pdf

[3] Parisi, Alessandro. Hands-On Artificial Intelligence for Cybersecurity :
Implement Smart AI Systems for Preventing Cyber Attacks and Detect-
ing Threats and Network Anomalies, Packt Publishing, Limited, 2019.
ProQuest Ebook Central, https://ebookcentral.proquest.com/lib/techlib-
ebooks/detail.action?docID=5847212. page 13

[4] The Applications of Sentiment Analysis for Russian Language Texts: Cur-
rent Challenges and Future Perspectives Sergey Smetanin Journal: IEEE
Access, 2020, Volume 8, Page 110693 DOI:10.1109/ACCESS.2020.3002215
available in https://link.springer.com/chapter/10.1007/978-3-030-34872-
4_35

[5] IBM. (n.d.). Unsupervised Learning. Retrieved from
https://www.ibm.com/topics/unsupervised-learning

[6] IBM. (n.d.). Supervised Learning. Retrieved from
https://www.ibm.com/topics/supervised-learning

[7] Stack Overflow. (2018). Stack Overflow Developer Survey 2018. Retrieved
from https://insights.stackoverflow.com/survey/2018

[8] Devopedia. (n.d.). Machine Learning in Python. Retrieved from
https://devopedia.org/machine-learning-in-pythonStackOverflow-2018

[9] Medium. (n.d.). Feature Selection. Retrieved from
https://medium.com/analytics-vidhya/feature-selection-85539d6a2a88

[10] Y. BBI, H. Yli, and S. SMA, 2022, "Feature Selection: A Re-
view and Comparative Study", EDP Sciences. https://www.e3s-
conferences.org/articles/e3sconf/pdf/2022/18/e3sconf_icies2022_01046.pdf

47

5. Conclusion......................................
[11] Data Clustering : Algorithms and Applications, edited by Charu

C. Aggarwal, and Chandan K. Reddy, CRC Press LLC, 2013. Pro-
Quest Ebook Central, http://ebookcentral.proquest.com/lib/techlib-
ebooks/detail.action?docID=1355921.

[12] Bolón-Canedo, Verónica, et al. Feature Selection for High-
Dimensional Data, Springer International Publishing AG, 2015. Pro-
Quest Ebook Central, https://ebookcentral.proquest.com/lib/techlib-
ebooks/detail.action?docID=4085623.

[13] Analytics Vidhya. (2020, October). Feature Selec-
tion Techniques in Machine Learning. Retrieved from
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-
techniques-in-machine-learning/

[14] Medium. (n.d.). Feature Selection. Retrieved from
https://medium.com/analytics-vidhya/feature-selection-embedded-
methods-a7940036973f

[15] Zhang, XD. (2020). Machine Learning. In: A Matrix Algebra Approach to
Artificial Intelligence. Springer, Singapore. https://doi.org/10.1007/978-
981-15-2770-8_6

[16] Mark A. Hall, 1999, Correlation-based Feature Selection for Machine
Learning. https://www.cs.waikato.ac.nz/ mhall/thesis.pdf

[17] Absalom E. Ezugwu, Abiodun M. Ikotun, Olaide O. Oye-
lade, Laith Abualigah, Jeffery O. Agushaka, Christopher
I. Eke, Andronicus A. Akinyelu, Engineering Applications
of Artificial Intelligence, Volume 110,2022, 104743, ISSN
0952-1976, https://doi.org/10.1016/j.engappai.2022.104743.
(https://www.sciencedirect.com/science/article/pii/S095219762200046X)

[18] "Measures of Distance in Data Mining." GeeksforGeeks, URL:
https://www.geeksforgeeks.org/measures-of-distance-in-data-mining/ (ac-
cessed May 22, 2023).

[19] Nielsen, F. (2016). Hierarchical Clustering. In: Introduction to HPC
with MPI for Data Science. Undergraduate Topics in Computer Science.
Springer, Cham. https://doi.org/10.1007/978-3-319-21903-5_8

[20] Brown, Daniel, 2020, "Fast Clustering Using a Grid-
Based Underlying Density Function Approximation".
https://core.ac.uk/download/pdf/322808625.pdf

[21] Dahal, Sujan, 2015, "Effect of Different Distance Measures in
Result of Cluster Analysis", Aalto University School of Engineer-
ing, Department of Real Estate, Planning and Geoinformatics.
https://core.ac.uk/download/pdf/80716648.pdf

48

...................................... 5. Conclusion

[22] Lloyd, S. Least squares quantization in pcm. Information Theory. IEEE
Transactions.

[23] Sari, Herlina Latipa et al, 2017, "IMPLEMENTATION OF
K-MEANS CLUSTERING METHOD FOR ELECTRONIC
LEARNING MODEL", Journal of Physics: Conference Series.
https://iopscience.iop.org/article/10.1088/1742-6596/930/1/012021/pdf

[24] M. de Hoon, S. Imoto, J. Nolan, and S. Miyano. "Software
for Clustering Gene Expression Data." University of Tokyo, URL:
http://bonsai.hgc.jp/ mdehoon/software/cluster/software.htm

[25] P. Berkhin. A survey of clustering data mining techniques. Grouping
Multidimensional Data , pages 25– 71, 2006.

[26] B. Mirkin. Clustering for Data Mining: A Data Recovery Approach .
Chapman and Hall/CRC, Boca raton, FL, 2005.

[27] Ke-Wei Wang, 2016, "A hybrid approach for anomaly detec-
tion using K-means and PSO", Atlantis Press. https://www.atlantis-
press.com/article/25861007.pdf

[28] Aljumily, Refat, 2016, "Agglomerative Hierarchical Clustering: An In-
troduction to Essentials. (1) Proximity Coefficients and Creation of a
Vector-Distance Matrix and (2) Construction of the Hierarchical Tree and
a Selection of Methods", Global Journals Inc. (USA). https://asels.org/wp-
content/themes/asels/uploads/20118_5f9ec67805003.pdf

49

50

Appendix A
Appendix

A.1 Time table

A.2 Correlation

A.3 Plotly graphs

A.4 Outliers

51

A. Appendix

Figure A.1: Events that last longer than 0 ms

52

.......................................A.4. Outliers

Figure A.2: Correlation matrix

53

A. Appendix

Figure A.3: Polar Plot between the 1 and the 3 clusters

54

.......................................A.4. Outliers

Figure A.4: Polar Plot between the 2 and the 3 clusters

Figure A.5: Polar Plot

55

A. Appendix

Figure A.6: Polar Plot

Figure A.7: Polar Plot

56

.......................................A.4. Outliers

Figure A.8: Polar Plot

Figure A.9: Dataframe with Euclidean distance > 2.2 for the 2 cluster.

Figure A.10: Dataframe with Manhattan distance > 10.0 for the 2 cluster.

Figure A.11: Dataframe with Euclidean distance >3.0 for the 3 cluster.

57

A. Appendix

Figure A.12: Dataframe with Manhattan distance > 13.0 for the 3 cluster.

58

	Acknowledgements
	I
	Declaration
	I
	Introduction
	Unsupervised identification
	Supervised identification
	Selected identification for thesis

	Introduction to data analysis for unsupervised identification
	Programming language
	Description of the dataset
	Data analysis
	Visualisation technique

	Feature selection
	Correlation matrix

	Clustering
	Distances
	K-means clustering
	Factors affecting K-means
	Anomaly detection in K-means
	Outlier detection

	Hierarchical Agglomerative clustering
	Anomaly detection in Agglomerative clustering

	Visualisation technique

	Conclusion
	Bibliography
	Appendix
	Time table
	Correlation
	Plotly graphs
	Outliers

